Scholarships in 2020

2020 Facebook Research Scholarship Program Online Application

Facebook Research Scholarships

Deadline October 4, 2019
Opening date August 12, 2019
Days Remaining Closed
Category Scholarships in 2020
Type Fully Funded
Location Multiple Locations

Applications for the 2020 Facebook Fellowship program are now open. The Fb fellowship is open to students at all universities both in the United States and in other countries. The Facebook Fellowship Program is designed to encourage and support promising doctoral students who are engaged in innovative and relevant research in areas related to computer science and engineering at an accredited university.

The FB program is open to students in any year of their Ph.D. study and supports talented students from traditionally underrepresented minority groups. Applications are evaluated based on the strength of the student’s research statement, publication record, and recommendation letters.

Winners of the Fb Fellowship are entitled to receive two years of tuition and fees paid, a stipend of $37,000 each year and up to $5,000 in conference travel support.

Facebook Scholarship Coverage

  • Tuition and fees paid for the academic year (up to two years/four semesters)
  • $37K grant (one-time payment during each academic year)
  • Up to $5,000 in conference travel support
  • Paid visit to Facebook headquarters to for the annual Fellowship Summit

Facebook Scholarship Eligibility Criteria

  • Applicants must be full-time Ph.D. students currently involved in on-going research who are enrolled in an accredited university in any country
  • Students’ work must be related to one or more relevant disciplines (see research areas below)
  • Students must be enrolled during the academic year(s) the Fellowship is awarded

Facebook Scholarship Online Applications Process

  • 500-word research summary which clearly identifies the area of focus, importance to the field and applicability to Facebook of the anticipated research during the award (reference the research areas below)
  • Resume or CV, with email, phone and mailing address, and applicable coursework noted
  • Two letters of recommendation. Please provide reference email addresses. One reference must be from an academic advisor attached with Fb fellowship online application, and motivation letter is optional

Recommendation Letters requirement for Facebook Fellowship

You will be asked to provide the names and email addresses of your two references. They will receive an email prompting them to upload their recommendation letters. If your application is a finalist, we may contact your references for confirmation.

Facebook Scholarship Research Areas

Facebook Fellowship Applications will be accepted from students with research related to one of the following areas:

a) Applied Statistics

We would like to support students who are working on novel techniques in statistical modeling and inference. Areas of research include but are not limited to inference in high dimensions, causal inference, graphical models, multi-armed bandits, sparsity and compressed sensing, change detection, forecasting and time series analysis, optimization, regression, classification, clustering, graph partitioning, entity linkage, and entity deduplication. Applications of interest include but are not limited to user modeling, detecting violations, experimentation, surveys and efficient sampling.

b) AR/VR Photonics and Optics
We would like to support students that are excited about developing technology in Photonics and Optics that can be applied to VR and AR visual systems. Topics of interest include functional planar optical elements, highly efficient light sources, optical and photonic imaging devices, unique optical materials and structures.

c) AR/VR Privacy and Ethics
We would like to support students whose research sits at the intersection of future technologies (augmented reality and virtual reality, specifically) and privacy and/or ethics. We are also considering applicants who have established research programs in AR, VR, or video presence technologies more broadly (either as a field of focus or as a methodological medium). This includes but is not limited to research on the integration of emerging technologies in everyday life and in the workplace.

d) Blockchain and Cryptocurrency
We would like to support students working on novel techniques for building decentralized databases of programmable resources. Topics of interest include all areas related to high assurance, scalability and security of the technology, in particular, blockchain, smart contracts, financial technologies and payments, transactions, distributed systems, concurrency and formal methods.

e) Computational Social Science
We would like to support students who are working on advancing research in the social sciences with computational approaches. Topics of interest include but are not limited to theoretic and practical models and analysis of social networks, information cascades and influence, causal inference in networks, computer-mediated communication in dyads and groups, norms and trust, political participation, location-aware social networks and mobility, social processes after natural disasters and crises, well-being, social support, and mental health support.

f) Computer Graphics
We would like to support students who are working on advancing the state-of-the-art in computer graphics and efficient real-time rendering for augmented and virtual reality. Topics of interest include but are not limited to applications of machine learning methods, ray tracing and ray casting hardware, physically-based shading, geometry processing and compression, image and video compression, perceptual rendering, high-quality avatars, global illumination, scene prefiltering, and rendering complexity reduction.

g) Computer Vision
We would like to support students who are working on advancing the state-of-the-art in computer vision. Topics of interest include, but are not limited to image and video recognition (classification, detection, and segmentation), vision and language (visual question answering and visual dialog), visual reasoning (forward prediction, understanding physics, and understanding affordance), large-scale and weakly supervised learning, and understanding humans (pose estimation and action recognition).

h) Compute Storage and Efficiency
We would like to support students who are working on novel techniques for improving the efficiency of large scale systems such as databases, file systems, caching systems, pub/subsystems. This includes novel exploring techniques to shift computation, memory and storage with the goal of optimizing power consumption and/or cost.

i) Distributed Systems
We would like to support students working on a broad set of topics related to all kinds of distributed systems, including but not limited to fault tolerance, reliability, system management, scale, performance, efficiency, and security.

j) Economics and Computation
We support students who are passionate about applied or theoretical work in the areas of game theory, optimization, operations management and econometrics. Example research topics of particular relevance include ad auction design, mechanism design for social good, applications of combinatorial and convex optimization at large scale, and the intersection of econometrics and machine learning, but we encourage and welcome applications from researchers doing work on other topics in the disciplines above.

k) Instagram/Facebook App Well-being and Safety
We would like to support students who are working on understanding how experiences with social technology play a role in the well-being and safety of communities and societies. This includes, but is not limited to, research that will help us understand problematic issues facing our communities, develop better content policies, assess possible interventions to protect our communities, or identify the mechanisms (e.g., social support, social comparison) through which technology usage directly impacts well-being.

l) Machine Learning
We would like to support students who are working on advancing the state-of-the-art in machine learning. Topics of interest include but are not limited to reinforcement learning, deep learning, causality, non-convex optimization, multi-task learning, curriculum learning, learning embeddings and metrics, speech recognition, cost-sensitive learning, and structured prediction.

m) Natural Language Processing
We would like to support students with topics of interest that include: machine translation, multilingual learning, representation learning, named entity recognition, text classification, semantic parsing, summarization, dialog systems.

n) Networking and Connectivity
We would like to support students active in the research and development of scalable, fast, reliable, and efficient network infrastructure across all areas of connectivity, including wired/wireless network domains such as data centers, backbones, peering, mobile core/backhaul, and access; WiFi to mmWave to optical; broadband connectivity for urban, peri-urban and rural society; the whole stack, from chip/interface/system hardware design to low-level firmware to distributed systems; and the whole network lifecycle, from planning/design, to provisioning/deployment, to monitoring/troubleshooting/visualization, to control stacks; including applications of machine learning in networking.

o) Privacy and Data Use
We would like to support students who are working on understanding privacy and data use, specifically how to make data more transparent to users and give people more control of their data. This includes, but is not limited to, research on transparency in online behavioral advertising.

p) Programming Languages
Applications are welcome from students who are interested in the design and implementation of programming languages and related tools. Topics of interest include but are not limited to: type systems, static analysis, optimizing compilation, runtimes, formal specification and verification, and high-level support for features such as concurrency, data privacy, control of side effects, and probabilistic and differentiable programming.

q) Security/Privacy
We would like to support students with established proficiency in the field and passion for solving complex security challenges. Topics of interest include but are not limited to: systems, software, and network security; privacy; cryptography; malware; abuse detection and mitigation; authentication and authorization.

r) Social and Economic Policy
We would like to support students who are working on advancing policy-relevant research in social science, policy analysis, and legal analysis fields. Individuals pursuing research using both qualitative and quantitative methods are encouraged to apply. Topics of interest include but are not limited to the online child and adult safety, the relationship between online communities and international security and foreign policy issues, the role of social media and technology in political, economic, social systems, and the potential impacts of information (or misinformation) on health and well-being.

s) Spoken Language Processing and Audio Classification
We would like to support students working in speech and audio processing, particularly those advancing the state of the art in human-computer interaction, human-human interaction, and video content understanding. Topics of interest include but are not limited to speech recognition and synthesis, spoken language understanding, dialog systems, auditory scene analysis, acoustic event detection, audio-visual modeling and sentiment analysis.

t) Structured Data Stores
We welcome applications from students working on novel techniques for improving the efficiency and reliability of large scale systems such as databases, key/value stores, file systems, caching systems, pub/subsystems, and security for storage. This includes exploring novel techniques to shift work between CPUs, memory, and storage with the goal of optimizing power consumption, cost, or developer efficiency.

u) Systems for Machine Learning
We welcome applications from students working on interdisciplinary research to support machine learning at scale. Research topics of interest include but are not limited to, hardware and software techniques to improve machine learning inference and training in the data center or at the edge. Examples of projects include research targeting machine learning hardware specialization, compiler technologies for deep learning platforms, and techniques for distributed training/learning. We are also interested in research focused on workload characterization and performance analysis of real-world machine learning applications.


Research outside the above: relevant work in areas that may not align with the research priorities highlighted above.


Yousaf Saeed

(Editor) Yousaf is an educationist, doctoral degree holder in engineering and had won 3 consecutive scholarships abroad. He enjoyed studying in most prestigious universities without even paying a single penny. He loves to motivate youth to apply for different scholarship opportunities and help them in highlighting the aspects that may play a key role in their success. He also loves to write on academic topics and educational niche.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button